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A B S T R A C T

Selective laser melting (SLM) is a powder-based additive manufacturing technique which creates parts by fusing
together successive layers of powder with a laser. The quality of produced parts is highly dependent on the
proper selection of processing parameters, requiring significant testing and experimentation to determine
parameters for a given machine and material. Computational modeling could potentially be used to shorten this
process by identifying parameters through simulation. However, simulating complete SLM builds is challenging
due to the difference in scale between the size of the particles and laser used in the build and the size of the part
produced. Often, continuum models are employed which approximate the powder as a continuous medium to
avoid the need to model powder particles individually. While computationally expedient, continuum models
require as inputs effective material properties for the powder which are often difficult to obtain experimentally.
Building on previous works which have developed methods for estimating these effective properties along with
their uncertainties through the use of detailed models, this work presents a part scale continuum model capable
of predicting residual thermal stresses in an SLM build with uncertainty estimates. Model predictions are
compared to experimental measurements from the literature.

1. Introduction

Free-form fabrication techniques such as selective laser melting
(SLM) have seen increasing use across industries as they enable the
production of parts directly from computer-aided design (CAD) models
without specific tooling. While a number of such techniques have been
developed, SLM is a powder-based technology in which a laser is used
to melt selected regions of a deposited powder bed based on a geo-
metric model. Re-solidification of the melt forms the part. Powder is
added and melted layer by layer until a full part is built [1].

SLM faces a number of challenges as improper selection of proces-
sing parameters, such as laser power, speed, or scan path, can lead to
geometric defects, pore formation, and warping or part weakness due to
thermal stress. Currently, parameters for a given part, material, and
machine are determined through a dial-in process in which test parts
are constructed with different machine settings and their properties
measured until settings are found that produce acceptable results [1].
Computational modeling has the potential to reduce the costs and time
required to dial in new geometries and materials by predicting the
performance of parts produced using a specific set of parameters in

advance of a build. Models could also be used to inform automatic
process control schemes [2].

There are broadly two approaches to modeling the SLM process,
continuum models and particle-scale models. Continuum models ap-
proximate a powder bed as a continuous medium, neglecting individual
particles. Numerous continuum models of laser-powder additive man-
ufacturing processes have already been developed. For example, Sun
et al. [3] used a 3D finite element model implemented in ANSYS to
predict the temperature profile and melting of an aluminum alloy for a
complex geometry. Zeng et al. [4] used adaptive meshing techniques to
resolve the thermal gradients near the laser. Hodge et al. [5] introduced
a thermo-mechanical model to calculate part residual stresses. In all of
these works, however, simple approximations were used to determine
the effective powder properties required by the continuum model and
no quantification of uncertainties was performed.

Particle-scale models, on the other hand, resolve individual particles
in the domain and often encompass detailed physics. While using a
particle-scale model to simulate a full-scale part build would be too
computationally expensive, particle-scale models of small portions of
SLM powder beds have had success in qualitatively explaining some
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phenomena occurring at the particle level (e.g. Khairallah et al. [6] who
used particle-scale models to investigate the physics behind spatter and
pore formation). Others have used particle-scale models to calculate
effective properties needed in continuum models [7–9]. This work
presents a framework in which effective properties determined from
particle-scale simulations are used to make residual stress predictions
with a continuum model. Uncertainties calculated for effective para-
meters are propagated through the continuum model using Gaussian
process surrogate models [10], allowing the effects of uncertainties at
the particle-scale to be assessed at the continuum level and quantitative
comparison to experimental data to be made.

2. Modeling approach

2.1. Mathematical model

The temperature in the SLM powder bed is calculated using the
energy equation, cast in the enthalpy formulation to better account for
latent heats of phase change [11].

∂
∂

= ∇ ∇ +H
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H(x, y, z, t) is the enthalpy of the material, T(x, y, z, t) the temperature, f
(x, y, z, t) the heat source due to the laser, and keff the thermal con-
ductivity of the powder. keff is often not known for a powdered material
and will be informed by a particle-scale model. The top boundary of the
domain has convective-radiative boundary conditions applied. The
bottom boundary is fixed temperature at 300 K, and the remaining
boundaries are insulated. This is shown in Fig. 1.

The enthalpy formulation requires a relation between enthalpy and
temperature, which is given by [11]
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g(T) is the melt fraction, cs and cl are the solid and liquid specific heats,
and L is the latent heat. Powder heat capacities (ρcs) are calculated
using volume averaging, as given by Eq. (8). In order to determine a
relation between melt fraction and temperature, the lever rule is used,
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, for T between Ts, the solidus temperature, and Tl, the

liquidus temperature. g(T) is zero below Ts and one above Tl.
A Gaussian laser heat source is used for f(x, y, z, t) [12].
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I0 is the laser intensity, α powder bed optical absorptivity, xl and yl give
the laser position, ω is the standard deviation of the Gaussian, and β is
the optical extinction coefficient. Similar to keff, α and β are unknown
for most powder materials and results from particle-scales models will
be used to determine them.

A continuum mechanical model coupled to the thermal model is
used to make residual stress predictions in built parts. The mechanical
model uses Hooke's law for elastic, isotropic, materials to relate the
incremental strain, the change in strain over a time increment, Δϵ, to

the incremental stress as given in Eq. (4).

= − − + − −σ ϵ ϵ ϵ I ϵ ϵ ϵμ λΔ 2 (Δ Δ Δ ) tr(Δ Δ Δ )p t p t (4)

λ and μ are Lamé's parameters, Δϵe and Δϵp are the elastic and plastic
strain increments, and Δϵt is the increment of thermal strain, which
provides the coupling to the energy equation and is calculated from the
temperature using Eq. (5) [13].
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T1 and T2 are the temperatures at the start and end of a time increment
and a is the coefficient of thermal expansion.

The plastic strain increment, Δϵp, is calculated using a J2 plasticity
model by enforcing the inequality that the von Mises equivalent stress
not exceed the yield strength.

≤s s σ3
2

: y (6)

s is the deviatoric of the total stress, σ+ Δσ, and σy(T, ϵp) is the yield
strength of the material. A temperature-dependent linear strain-hard-
ening relation is used such that = + ϵσ σ T κ( ) | |y y

p0 .
The stress increment can then be related to the displacement in-

crement through Newton's law.

= ∇ σ0 ·Δ (7)

Zero stress boundary conditions are imposed on all domain
boundaries except for the bottom boundary, where a zero displacement
condition is used, simulating attachment to a large baseplate. This is
shown in Fig. 1.

2.2. Implementation details

A finite volume discretization scheme using the OpenFOAM finite
volume library is used for all the governing equations [14,15]. The
domain is divided into hexahedral cells and the equations integrated
over them to form a linear system that is solved iteratively. The energy
equation is solved using a diagonal incomplete LU (DILU) precondi-
tioned, stabilized conjugate gradient solver. The three components of
the displacement in the mechanical equations are solved coupled using
a DILU preconditioned, stabilized bi-conjugate gradient solver. The
spatial discretization is first order and a backwards Euler time in-
tegration scheme is used. The equations are solved segregated, with the
temperature field computed first and transferred to the mechanical
solver since the mechanical governing equations depend on the thermal
solution, but not visa-versa.

The model is multi-phase consisting of powder, solidified metal, and
a background gas (usually air or nitrogen). Simulations are initialized
with a single layer of powder on top of a solid metal base. For multi-
layer simulations, after the laser scans the first layer, a new domain is
initialized with an additional layer of powder and the solution from the
last time step of the previous layer simulation is copied over to act as
the new initial condition. Material properties are calculated based on
location in the domain. Cells that fall in the powder layer are assigned
powder properties and cells that lie in the plate are assigned solid metal
properties. Powder cells are initially considered to be a separate phase
from metal and air. However, once melting occurs, powder volume
fractions are converted to solid and air volume fractions, depending on
the prescribed powder porosity. The melt fraction, g(T), for the powder
is tracked in each cell to determine when volume fractions should be
converted. The initialization, melting, and layer addition processes are
shown in Fig. 2.

Volume averaging is used to calculate material properties of cells
that contain mixtures of materials. This is given in Eq. (8).

= + + − −ζ γ ζ γ ζ γ γ ζ(1 )total powder powder solid solid powder solid air (8)

γ is the volume fraction of a material and ζ is a given material property.Fig. 1. Simulation domain showing boundary conditions.
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The energy equation is nonlinear due to the dependence of the
enthalpy term on temperature, which is solved following the method of
Swaminathan and Voller [11]. In each iteration, the enthalpy term is
expressed using a truncated Taylor series expansion.

= + −+ +H H T TdH
dT

[ ]i i
i

i i1 1
(9)

where i and i+1 refer to the previous iteration and current iteration,
respectively. This allows the enthalpy terms to be accounted for par-
tially implicitly to improve stability and convergence. The temperature
solution is iterated until the temperature and enthalpy fields are con-
sistent to within a prescribed tolerance.

The plastic nonlinearity in the mechanical model is solved using the
elastic predictor-plastic corrector method. In each cell, a trial stress is
calculated for a fully elastic response and the von Mises equivalent
stress computed. In cells where the inequality of Eq. (6) is violated, a
plastic strain increment is calculated and imposed that returns the stress
to the yield surface [13]. The stress increment is then updated for the
next iteration and the process repeated until the change in the dis-
placement field is below a prescribed tolerance.

The temperature and displacement fields are solved for over the
entire domain at each time step. This requires that, for the mechanical
model, Lamé's parameters, μ and λ, must be specified for the entire
domain, including the powder and air cells. However, these quantities
are only well defined for a solid. To address this, Lamé's parameters are
set to be 3 orders of magnitude smaller than the solid material values in
the air and powder regions. It is determined that making them smaller
has little impact on the solution and slows convergence. Air and powder
cells thus provide very little resistance to deformation. They are also set
to have arbitrarily large yield strengths and zero coefficients of thermal
expansion, so they do not undergo thermal expansion or plastic de-
formation.

3. Results

3.1. Problem description

The model results are compared against the experimental data of
Yadroitsava et al. [16], who measured experimentally the residual
stress in stainless steel 316 powder melted onto a stainless steel sub-
strate using SLM for both a single layer and 5 layers. The layer thickness

used is 40 μm and the size of the area being melted is 1 cm×1 cm.
Specimens were constructed using a simple back-and-forth hatching
scan pattern with no rotation of the hatch pattern between layers. Re-
sidual stresses were measured in directions parallel and perpendicular
to the laser scan direction in the plane of the powder bed. Measure-
ments were made with a ProtoXRD X-ray diffractometer using the sin2ϕ
method. For single layers, measurements were made at the center of the
part, both at the bottom of the layer, near the baseplate, and at the top,
near the free surface. For 5 layer parts, measurements were additionally
made approximately 100 μm from the free surface [16].

In order to compare to Yadroitsava's data, simulations are con-
ducted for 316 stainless steel powder. Thermal properties are given by
Khairallah et al. [17,6] for temperatures up to the vaporization tem-
perature and summarized in Table 1. Mechanical properties are given
by Hodge et al. [5]. Per Hodge et al, mechanical property data for 316
stainless steel are difficult to find at temperatures near the melt point.
Thus, Hodge et al. provides extrapolated values for temperatures above
the measurement range found in the literature (approximately 1300 K)
up to the melt point [5]. Above the melt point, the material is con-
sidered liquid and Lamé's parameters are set arbitrarily low as is done
for powder and air cells. Properties such as Young's modulus and yield
strength are temperature dependent, so polynomial curve fits are ap-
plied to Hodge's mechanical property values to create functions that can
be used by the simulation.

Significant uncertainty exists in the mechanical properties used in
the simulation. Not only are high-temperature data not available, but
properties of additively manufactured materials are known to differ
from those of wrought materials. Mower and Long [18] measured the
yield strength, Young's modulus, ultimate strength, and failure strain of
both wrought 316 stainless steel and specimens manufactured using
laser powder bed fusion at room temperature. From these values, un-
certainties in yield strength, Young's Modulus, and strain hardening
coefficient are estimated by making the constant coefficient in the
polynomial functions derived from Hodge et al. [5] a Gaussian random
variable whose mean is selected such that the expected value of each
property at 300 K is the average of the value from Hodge et al. [5] and
that measured by Mower and Long [18] for additively manufactured
316 stainless steel. Standard deviations are selected to be half of the
difference between the Hodge et al. and Mower and Long values. As no
data were found in the literature for coefficients of thermal expansion
of additively manufactured materials, uncertainty in this quantity is not
considered. Mechanical properties used in the simulation are summar-
ized in Table 2. Laser parameters used in the simulation are chosen to
match those used by Yadroitsava and are summarized in Table 3.

3.2. Computational details

The powder layer is meshed using a uniform mesh size of 10 μm and
a constant time step size of 0.001 s is used. This is selected as further
mesh and temporal refinement results in variations of less than 5% for
the maximum value of both the temperature and stress solutions. The
initial computational domain consists of approximately 5 million cells

Fig. 2. (a) Initial domain with 1 layer of powder on a solid plate. (b) Domain after completion of 1 layer scan. Melted and loose powder on solid plate. (c) Domain
after 1 layer addition. Loose powder on top of previously melted powder. (d) Domain after completion of 2 layer scans. Two layers of melted powder on solid plate.

Table 1
316 stainless steel thermal properties.

Property Value

Density 7.43 g/cm3

Thermal conductivity 20.0W/mK
Specific heat 320.3+ 0.379T J/kg K (T in K)
Emissivity 0.3–0.6 (uniform random)
Latent heat 270 kJ/kg
Solidus temperature 1648 K
Liquidus temperature 1673 K

D. Moser, et al. Additive Manufacturing 29 (2019) 100770

3



and approximately 15,000 time steps are needed to complete the scan
of a layer.

3.3. Effective powder properties

While most effective powder properties are calculated by volume
averaging the properties of steel and air, the extinction coefficient,
thermal conductivity, and absorption coefficient are not accurately
approximated using this method [19]. These parameters are instead
calculated using particle-scale models. Moser et al. [7] developed a
method for modeling interactions between a laser and powder particles.
The method uses the discrete element method (DEM) to represent
powder particles and ray-tracing to simulate a laser. Powder beds are
generated and laser rays propagated through them by calculating ray-
sphere intersections. On every ray-sphere interaction, a portion of the
ray energy is absorbed and a portion reflected to propagate further in
the domain. By tracking the deposition of energy in the domain, ef-
fective absorptivites and extinction coefficients for powders can be
obtained. Based on this analysis, a correlation was derived between
effective powder absorptivity and solid metal absorptivity and is given
in Eq. (10).

= + − + ±α α α α0.053 1.37 1.04 0.399 0.02eff
2 3 (10)

Similarly, a correlation between the effective powder extinction coef-
ficient, solid metal absorptivity, and the average radius of the powder
particles was derived and is given in Eq. (11). Although this relation
was developed for monodisperse particle beds, Moser et al. [7] found
the additional uncertainty due to polydispersity to be small for size
variation less than the average particle radius.

= + − + ±βR α α α0.325 1.03 1.22 0.587 0.022 3 (11)

However, the absorptivity of 316 stainless steel is itself an uncertain
quantity which varies based on the surface properties of the metal. As
given in Table 1, this quantity is approximated as a uniform random
variable between 0.3 and 0.6. In order to calculate the probability
distributions of the effective powder absorptivity and extinction coef-
ficient, samples are randomly drawn from the stainless steel absorp-
tivity distribution and each sample is used to calculate a powder ab-
sorptivity and extinction coefficient using Eqs. (10) and (11). The
uncertainties of 0.02 in each of the equations are approximated as
Gaussian random variables with means of zero and standard deviations
of 0.02. After an effective absorptivity or extinction coefficient is cal-
culated for a sample, a sample is drawn from the Gaussian distribution
and added to the result. This process is repeated for subsequent samples
to create a histogram of effective absorptivity and extinction coefficient
values. These histograms are then normalized by the total number of
samples drawn to create an approximation of the probability density
functions of these quantities, as shown in Fig. 3.

Moser et al. [8] also developed a method for calculating effective
thermal conductivities of powders using the DEM to represent powder
particles. Powder beds are generated and thermal gradients imposed
across them. Relations for heat transfer between particles due to par-
ticle-particle contact, conduction through the background gas, and ra-
diation are used to calculate the resulting heat flux and thus the ef-
fective thermal conductivity. Based on this analysis, a correlation was
developed between the metal conductivity (ks), gas conductivity (kg),
particle diameter (Dp), temperature (T), and powder conductivity (keff)
and is given in Eq. (12).

= − + + − + + ±k
k

θ θκ θ κ κ2.44 15.2 3.57 25.2 11.7 0.001 11%
s

eff 2 2
(12)

where θ and κ are non-dimensional quantities given by: =θ σT D
k

p

s

3
and

=κ k
k

g

s
. This relation was also developed for monodisperse particle beds,

but the additional uncertainty due to polydispersity was also found to
be small for size variation less than the average particle radius.

The variation of thermal conductivity with temperature between
room temperature and melt is found to be smaller than the uncertainty
in the correlation, thus the additional uncertainty of not considering
temperature dependent powder conductivity is minimal. Therefore, the
continuum thermo-mechanical model does not consider temperature-

Table 2
316 stainless steel mechanical properties.

Property Value

Young's modulus 2.204e11− 9.3795e7T± 1.0e10 Pa (T in K) (Gaussian random)
Coefficient of thermal expansion 1.2989e−5+8.4443e−9T− 2.8339e−12T2 1/K (T in K)
Yield strength 5.3394e8− 6.004e5T+3.9859e2T2− 0.1143T3± 1.13e8 Pa (T in K) (Gaussian random)
Strain hardening coefficient 7.4e8 ± 5.0e7 Pa (Gaussian random)
Poisson's ratio 0.3

Table 3
Laser properties for stainless steel stress calculations [16].

Property Case 1

Power 50W
Speed 10 cm/s
Beam diameter (FWHM) 70 μm
Hatch spacing (distance between successive laser scan lines) 70 μm

Fig. 3. Probability density functions for powder absorptivity and extinction coefficient.

D. Moser, et al. Additive Manufacturing 29 (2019) 100770

4



dependent thermal conductivities in order to allow faster convergence
of the thermal model. The powder effective conductivity is computed at
a temperature of 974 K, halfway between room temperature (300 K)
and the solidus temperature of 316 stainless steel. Powder conductivity
is then taken to be a Gaussian random variable with mean 0.32 and
standard deviation 0.04W/mK.

3.4. Uncertainty quantification

Once the continuum model input probability distributions are
known, they must be propagated through the model in order to estimate
uncertainties of the model outputs. The goal is to compute statistical
quantities, such as mean and standard deviation, for each model pre-
diction. This can be done by drawing samples from the input distribu-
tions, evaluating the model with the selected inputs, and computing
statistics from the model outputs. Due to the large computational cost of
the model, however, this approach is not tractable as large numbers of
evaluations are needed for the statistics to converge. Instead, a surro-
gate model is constructed. Due to the high dimensionality of random
input parameter space, a Gaussian process surrogate model from the
Dakota open source toolkit is used [20].

A Gaussian process surrogate approximates the response of a model,
Φ, as a function of the random input variables, ζ, using a combination of
trend functions and an error model [20].

≈ + −−g ζ β r ζ R f GβΦ ( ) ( ) ( )T T 1 (13)

g(ζ) is a set of trend functions evaluated at the current values of the
input variables and β are the coefficients of the trend functions. To-
gether, these define a response surface which provides an approxima-
tion of the true model response over large-scale variations in the input
parameters. For this application, a reduced quadratic trend function
basis is used, meaning that the function contains terms that are linear
and quadratic in each of the input parameters, but all interaction terms
are omitted. Thus, constructing the trend function requires 2n+1
model evaluations, where n is the number of random input parameters.
However, in general more than the minimum number of model eva-
luations are performed, thus requiring β to be determined using a least
squares fit [20].

When a least squares fit is used, the surrogate model will not exactly
interpolate the model evaluations used to construct it. Thus, an error
model is introduced which adjusts the trend function so that the sur-
rogate exactly interpolates the evaluations. r(ζ)T in Eq. (13) is a cor-
relation vector between ζ, the current input parameters, and the para-
meter values used in the model evaluations. R is a correlation matrix of
all of the model evaluation points, and −f Gβ( ) is the difference be-
tween the approximations return by the trend function and the actual
model evaluations at each of the evaluation points. Dakota uses a
Gaussian correlation function to model the correlation [10].

∑= ⎛
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2
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where n is the number of random input parameters, Xi,k is a matrix
made up of the model evaluation points, and θk are n parameters of the
surrogate model calculated using a maximum likelihood estimation
procedure.

Considering the parameters needed by the trend function and the
error model, 3n+1 model evaluations are required to fully inform the
surrogate model. For this work with six uncertain variables, a minimum
of 19 evaluations are needed. In order to ensure surrogate model ac-
curacy, 30 evaluations are performed to build the surrogate model and
an addition 4 to assess its accuracy. Model evaluation points are se-
lected using the Latin Hypercube sampling method in which the range
of each uncertain variable is divided into equal probability intervals
and a sample drawn randomly from within each one [10]. A surrogate
constructed using 30 evaluations is found to differ on average 10% from

the model across the quantities of interest and the 4 test evaluations.
This is deemed sufficient accuracy as the surrogate is being used only to
estimate uncertainties.

After the surrogate model is constructed, moment statistics are
calculated by Monte Carlo sampling. Since the surrogate is inexpensive
to evaluate, thousands of samples can be performed in order to calcu-
late the mean and standard deviation of each quantity of interest,
providing an estimate of the range of the model predictions possible
given the specified input parameter uncertainties.

The contribution of each random input parameter to the overall
uncertainty in the quantities of interest is also calculated using variance
based decomposition (VBD). VBD defines the main effect, S, of an input
parameter, ζ, on a model response Φ as given in Eq. (15), and is the
fraction of the uncertainty in output Φ due to ζ alone. VBD defines the
total effect, T, of ζ on Φ as given in Eq. (16), and is the fraction of the
uncertainty in output Φ due to interactions between ζ and other inputs
[20].

=S
E ζVar [ (Φ| )]

Var(Φ)i
ζ ii

(15)

=
… …− +T

E ζ ζ ζ ζ(Var(Φ| , , , , , ))
Var(Φ)i

i i n1 1 1

(16)

The variances and expected values required by VBD are also calculated
using Monte Carlo sampling.

The response quantities of interest for this work are the residual
stresses parallel and perpendicular to the path of the laser both near the
powder-baseplate interface and near the top of the domain. For the five
layer case, additional quantities of interest are the stresses approxi-
mately 100 μm from the top of the domain.

3.5. Stress predictions

The action of the laser in the simulation creates overlapping melt
tracks of melted powder. Fig. 4 shows the laser spot as the laser per-
forms a line scan along the powder layer.

Repeated, overlapping laser line scans result in a recurring pattern
of residual stress distributions as shown in Fig. 5 from the top and Fig. 6
along a cross section.

Since it is not known exactly where the measurements of
Yadroitsava et al. were taken relative to the laser scans, calculated re-
sidual stresses are averaged across a laser track to calculate mean re-
sidual stress values as well as standard deviations of those means. These
standard deviations due to position are added in quadrature with the
standard deviations due to the uncertain model input parameters cal-
culated using the surrogate model method discussed previously to de-
termine an overall standard deviation on the residual stress predictions.
The predicted stress profiles in the consolidated powder layer from
baseplate to free surface are shown in Fig. 7 for the single layer case.

Fig. 4. Laser spot on powder bed surface.
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The shaded region indicates one standard deviation. The range of Ya-
droitsava's measurements near the plate and near the free surface are
shown as horizontal lines.

As can be seen, the model predictions fall within one standard de-
viation of the experimental data near the baseplate. Near the free sur-
face, predicted residual stresses fall off quickly in both cases over the
last 10 μm of height as the zero stress boundary allows the material to
deform freely to relieve stress. It is unknown the exact height at which
the measurement was taken, but the experimental and model results do
overlap to within a standard deviation for the entire range 30–40 μm
from the substrate for both the parallel and perpendicular cases. Thus,
the model results do agree with the available experimental data, given
the estimated uncertainties. It should be noted, however, that the
combined uncertainties due to model inputs and the location of the

measurement taken relative to the laser scan pattern are large, limiting
the precision of the model prediction.

The results from the 5 layer case are shown in Fig. 8. Again, the
shaded regions represent one standard deviation and Yadroitsava's
measurements are shown as horizontal lines.

For this case, the model predictions also line up with the experi-
mental results to within a standard deviation. However, model pre-
dictions average slightly lower than the experimental measurements,
particularly parallel to the scan direction. Despite some small oscilla-
tions that occur at the boundaries of each layer, the model predicts
residual stresses that stay essentially constant throughout the height of
the part and then fall off quickly near the free surface. Although the
magnitude of the stresses measured by Yadroitsava are larger, espe-
cially parallel to the scan direction, this is the same general trend in the
data as well, as the stresses measured near the substrate and 100 μm
from the surface are almost overlapping. The spacing of the measure-
ments is too coarse to be able to verify the layer oscillations that are
seen in the model.

Two possible reasons for the difference between the stress predic-
tions and measurements, particularly parallel to the scan direction are
that the continuum model does not account for the motion of the metal
and air that occurs when the powder melts. Thus the melted powder
remains a mixture of metal and air, with correspondingly reduced va-
lues for stiffness, as opposed to the air escaping the melt as happens in
reality. This reduced stiffness could account for the lower residual
stresses, an effect that would be more apparent the more layers mod-
eled. Additionally, the powder in the simulation is modeled as having
an arbitrarily low stiffness, providing no resistance to the deformation
of the melt at the interface between the two. In reality, the powder may
in fact provide some significant resistance, reducing the amount the
part is able to deform and thus increasing the residual stress.

Calculated uncertainties are relatively large for all cases, indicating
the difficultly of making precise predictions about additive processes.
The results of the VBD analysis allows the uncertainties due to each
individual parameter to be ranked. Figs. 9 and 10 show the VBD of the
stress parallel to the scan direction at the baseplate and at the free
surface, respectively, for the 5 layer build. As can be seen, the un-
certainty is dominated by the yield stress and effective absorptivity at
the baseplate and by the yield stress alone at the free surface. As the
sum of the main effects is very nearly one for both cases, these para-
meters contribute to the uncertainty almost completely on their own,
not in interactions with other parameters.

That effective absorptivity contributes to a large uncertainty near
the baseplate but not near the surface may be because the stress near
the baseplate is strongly influenced by the stress field in the baseplate,
which is governed by thermal stresses due to the amount of energy
absorbed. The free surface, however, is far enough away from the plate

Fig. 5. Residual stress top view.

Fig. 6. Residual stress cross section showing results of overlapping laser scans.
Arrows indicate the width of a scan line.

Fig. 7. Predicted residual stress profiles parallel to and perpendicular to laser scan direction for a single layer. Top of powder bed is at 40 μm from the top of the
baseplate. Horizontal lines show the range of Yadroitsava's measurements near the plate and near the free surface.
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for this effect not to be felt. VBD of the other stress predictions is also
performed, but the results are very similar, so are not shown here.

Uncertainties in the model may be underestimated due to un-mod-
eled physics in the framework, such as the complexities of the melt flow
which lead to variable melt track shapes that are not captured or esti-
mated here. Additionally, microstructure formation is not modeled,
which can contribute to significant variability in material properties for
additively manufactured components. The large contribution of yield

stress to the uncertainty underscores the importance of modeling the
microstructure in order to reduce the uncertainty on this parameter.
Finally, residual stress data for additively manufactured materials is
difficult to obtain, scarce in the literature, and also prone to large un-
certainties. More data to compare against would allow a better assess-
ment of the experimental uncertainty and whether the model's esti-
mated uncertainties are correctly capturing the experimental variation.
However, the multi-scale uncertainty quantification framework devel-
oped here provides a tool for estimating how process uncertainties at
the particle-scale effect the knowledge of quantities of interest at the
part-scale. Future work should incorporate additional particle-scale
physics and microstructure formation so that better predictions and
uncertainty estimates can be made.

4. Conclusion

A continuum thermo-mechanical model of the SLM process is pre-
sented. Particle-scale SLM models are used to calculate parameters of
the developed continuum thermal model. This demonstrates a frame-
work by which continuum level models can be informed with particle-
scale physics, providing a mechanism for computationally expensive
particle-scale models to be used to improve predictions at the con-
tinuum scale. Additionally, by using the Gaussian surrogate model
technique to propagate uncertainties through the continuum model, the
impact of particle-scale uncertainties can be calculated for the con-
tinuum prediction. This allows a quantitative comparison to experi-
mental data. The developed continuum model is able to make residual
stress predictions that agree with experimental measurements to within
the estimated uncertainties for a single layer and for 5 layers. However,
predicted means tend to be lower when compared to measured values
for 5 layers, perhaps due to un-modeled physics in the melting process.
Estimated uncertainties from the model are large, coming both from the
uncertainty in the measurement location and the input parameter un-
certainty, which is dominated by the yield stress and effective absorp-
tivity parameters, making precise residual stress predictions difficult.
The importance of yield stress uncertainty highlights the need for high-
fidelity microstructure models to inform mechanical properties, similar
to how thermal properties have been informed here. Experimental
improvements may also be possible to reduce uncertainties on the data
side, although many uncertainties arise from the powder-based nature
of the process itself, where exact knowledge of powder particle loca-
tions, sizes, and shapes is impossible. This highlights the challenges of
making credible predictions in SLM models and the need for further
incorporation of uncertainty quantification into SLM modeling.
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Fig. 9. Variance based decomposition of stress parallel to scan direction at the
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Fig. 10. Variance based decomposition of stress parallel to scan direction at the
free surface.
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